Endpoint API
Default function
load_model
load model and checkpoint here
Example:
class Model:
...
def load_model():
model = Model()
model.load_state_dict(torch.load(modelLoader.path))
model.to(device)
model.eval()
modelLoader.update_model(model)predict(data)
predict with http post body
Arguments
data
Dict (http post body)
Example:
predict_file(files)
predict with http post file
Arguments
files
File (http post file)
Example:
on_train_completed(metric, config)
Will call after the experiment is completed
Arguments
metric
Float (this experiment metric)
config
Dict (this experiment best conf9ig)
Example:
Last updated
Was this helpful?