Endpoint API

Default function

load_model

load model and checkpoint here

Example:

class Model:
    ...

def load_model():
    model = Model()
    model.load_state_dict(torch.load(modelLoader.path))
    model.to(device)
    model.eval()
    modelLoader.update_model(model)

predict(data)

predict with http post body

Arguments

data

Dict (http post body)

Example:

predict_file(files)

predict with http post file

Arguments

files

File (http post file)

Example:

on_train_completed(metric, config)

Will call after the experiment is completed

Arguments

metric

Float (this experiment metric)

config

Dict (this experiment best conf9ig)

Example:

Last updated

Was this helpful?